NJM2279M

■ PACKAGE OUTLINE

NJM2279D

5

3-INPUT 2-OUTPUT VIDEO SWITCH FOR AV-SET

■ GENERAL DESCRIPTION

NJM2279 is 3-input, 2-output video switch with $75\,\Omega_{\rm \cdot}$ driver circuit.

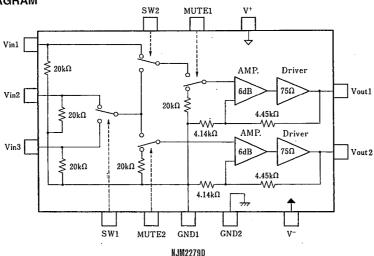
This video switch can be connected to TV monitor directly, as it has 6dB amplifier and 75 Ω drivers circuit internally.

The NJM2279 has the mute function.

■ FEATURES

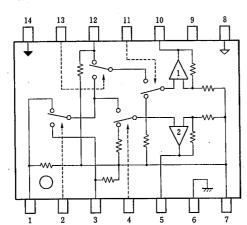
- 3 input 2 output
- Internal 6dB AMP.
- Internal 75 Ω Driver Circuit
- Operating Voltage Dual (±4V∼)
 Single (+8V∼)
- Internal 2 Output Mute Function
- Package Outline DIP14, DMP14
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION


Supply Voltage

Dual

 $\pm 4.0 \text{V} \sim \pm 7.0 \text{V} + 8 \text{V} \sim + 14 \text{V}$


Single

■ BLOCK DIAGRAM

NJM2279M

■ PIN CONFIGURATION

PIN FUNCTION

1. Vin3

8. V+

2. SW1

9. N.C.

3. Vin2

10. Vout1

4. MUTE2

11. MUTE1

5. Vout2

12. Vin1

6. GND2

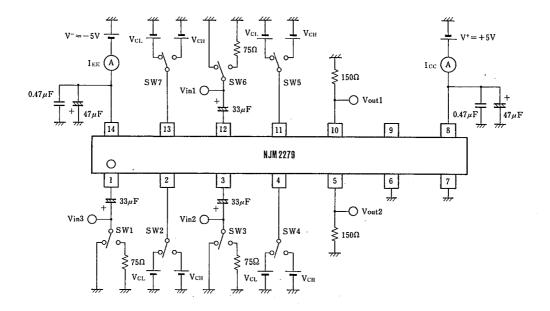
13. SW2

7. GND1

14. V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

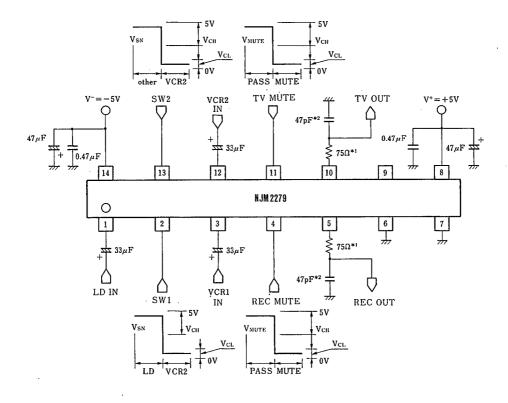

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+/V-	±7.5	V
Power Dissipation	PD	(DIP14) 700	mW
		(DMP14) 300	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

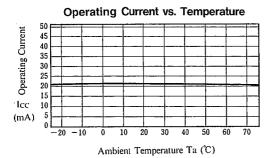
 $(V^+/V^-=\pm 5.0V, R_L=150 \Omega \text{ Ta}=25 ^{\circ}\text{C})$

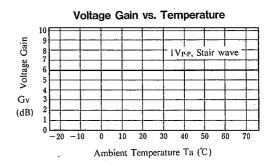
PARAMETER	. SYMBOL	BOL TEST CONDITION		TYP.	MAX.	UNIT
0 4 0	lcc	No signal	10.0	17.3	24.6	mA
Operating Current	IEE	No signal	-24.6	-17.3	-10.0	mA
Voltage Gain	Gv	V _{IN} =100kHz/1.0V _{P-P}	6.0	6.3	6.8	dB
Freguency Characteristic	Gr	5MHz/100kHz, 1.0V _P -P	-1.0	0.0	+1.0	dB
Differential Gain	DG	V _{IN} =1.0V _{P-P} Stair wave		0.2	_	%
Differential Phase	DP	V _{IN} =1.0V _{P-P} Stair wave	_	0.2		deg
Offset output Voltage I	Vosl	Vin 2-Vin 3:no signal	-40	0	+40	mV
Offset output Voltage 2	Vos2	Vin 1-Vin 2/Vin 3:no signal		0	+60	mV
Input/Output Crosstalk	СТ	V _{IN} =4.43MHz/1.0V _{P-P} , V _O /V _{IN}		70		dB
MUTE Crosstalk	СТм	V _{IN} =4.43MHz/1.0V _{P-P} , V _O /V _{IN}		-60	_	dB
Switch Change Voltage	Vсн		2.5	_	V+	٧
	VCL	·	0.0	_	1.0	V
Total Harmonic Distortion	THD	V _{IN} =1kHz 1.25V _{P-P}		0.1	_	%
Input Impedance	Rin		_	20	_	kΩ

■ TEST CIRCUIT

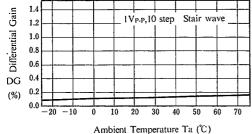

PARAMETER	SYMBOL	UNIT	INPUT TERMINAL	TEST TERMINAL	TEST CONDITION	
Operating Current	lcc	mA	_	8 pin	$V_{in} I \sim 3=0V$, $SWI/2 \cdot MUTEI/2=v_{CL}$	
	IEE	mA	-	14 pin	"-	
Voltage Gain	Gv	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}	
Freguency Characteristic	Gr	dB	1, 3, 12 pin	5, 10 pin	y .	
Differential Gain	DG	%	1, 3, 12 pin	5, 10 pin	Л	
Differential Phase	DP	deg	1, 3, 12 pin	5, 10 pin	"	
Offset output Voltage 1	Vosl	mV	_	5, 10 pin	V _{in} 1~3=0V	
Offset output Voltage 2	Vos2	mV	·-	5, 10 pin	V _{in} 1~3=0V	
Input/Output Crosstalk	CT	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}	
MUTE Crosstalk	СТм	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}	
Switch Change Voltage	Vсн	٧				
	VCL	٧	_			
Total Harmonic Distortion	THD	%	1, 3, 12 pin	5, 10 pin		

■ CONTROL SIGNAL-OUTPUT SIGNAL

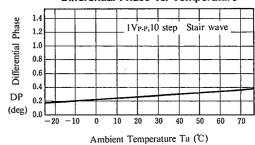

(L=V_{CL}, H=V_{CH}, X=LorH)

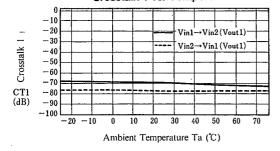

	CONTRO	OUTPUT			
SW t (2 pin)	SW 2 (13pin)	MUTE ((I pin)	MUTE 2 (4 pin)	Vout I (10pin)	Vout 2 (5 pin)
х	Х	L	L	GND	GND
х	х	L	Н	GND	OUT PUT
х	х	Н	L	OUT PUT	GND
L	L	Н	Н	V _{IN} 1	V _{IN} 2
L	Н	Н	Н	Vin 2	Vin 2
Н	L	Н	Н	V _{IN} 1	V _{IN} 3
Н	.H	Н	Н	V _{in} 3	V _{IN} 3

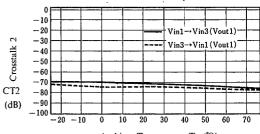
■ APPLICATION



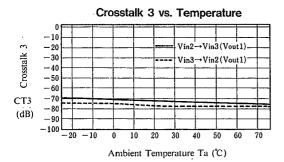
■ TYPICAL CHARACTERISTICS

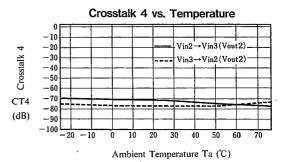


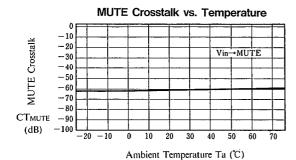

Differential Gain vs. Temperature

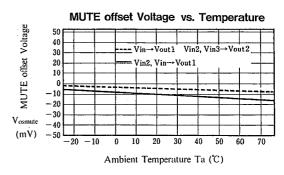

Differential Phase vs. Temperature

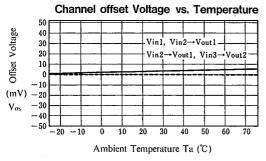
Crosstalk 1 vs. Temperature

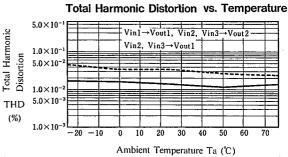


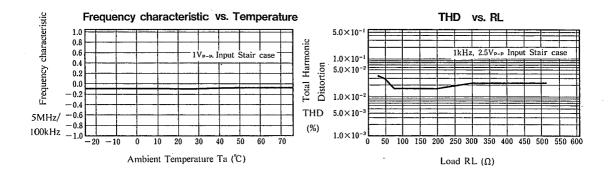

Crosstalk 2 vs. Temperature

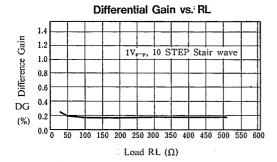


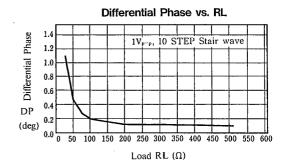

Ambient Temperature Ta (°C)

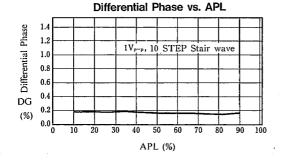

TYPICAL CHARACTERISTICS

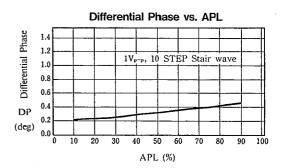


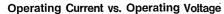


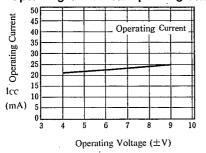


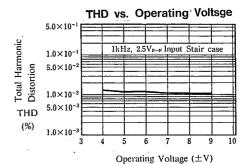


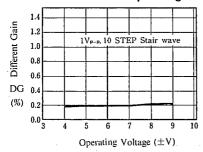

5

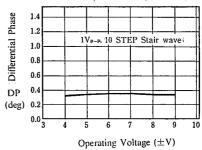

■ TYPICAL CHARACTERISTICS

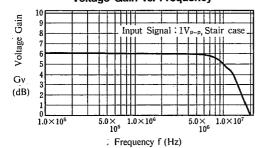


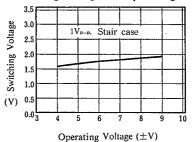


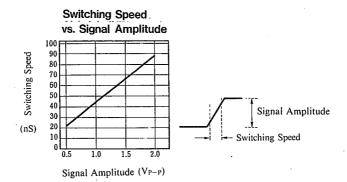



■ TYPICAL CHARACTERISTICS




Different Gain vs. Operating Voltage


Differential Phase vs. Operating Voltage


Voltage Gain vs. Frequency

Switching Voltage vs. Operating Voltage

■ TYPICAL CHARACTERISTICS

NJM2279

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.